

Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe I (G8)

Physik

Inhalt

1	Die	Fachgruppe Physik in der Goetheschule Essen	3
2	Ents	scheidungen zum Unterricht	4
	2.1	Unterrichtsvorhaben	4
	2.2	Vorbemerkung	4
Jal	hrgang	sstufe 6 (ganzjährig)	5
	Konte	kt: Sonne – Temperatur – Jahreszeiten / Inhaltsfeld: Temperatur und Energie (Wärmeleh	re) 5
	Konte	xt: Elektrizität im Alltag / Inhaltsfeld: Elektrizitätslehre	6
	Konte	xt: Hören und Sehen / Inhaltsfeld: Akustik und Optik	7
Jal	hrgang	sstufe 7 (ganzjährig)	8
		kt: Optik hilft dem Auge auf die Sprünge / Inhaltsfeld: Optik – Spiegelung, optische mente, Farbzerlegung	8
		xt: Elektrizität – messen, verstehen, anwenden / Inhaltsfeld: Von der Elektrostatik zur zitätslehre	9
	Konte:	xt: 100m in 10s / Inhaltsfeld: Mechanik - Geschwindigkeit	10
Jal	hrgang	sstufe 8 (halbjährig)	11
		kt: Werkzeuge und Maschinen erleichtern die Arbeit / Inhaltsfeld: Kraft, Druck und Inische Energie	11
Jal	hrgang	sstufe 9 (ganzjährig)	12
		kt: Radioaktivität und Kernenergie – Grundlagen, Anwendungen und Verantwortung / sfeld: Radioaktivität und Kernenergie	12
	Konte	kt: Elektrizität – messen, verstehen, anwenden / Inhaltsfeld: Elektrizitätslehre	13
		kt: Effiziente Energienutzung: eine wichtige Zukunftsaufgabe der Physik / Inhaltsfeld: e, Leistung, Wirkungsgrad	14
Ük	ersich	t Kompetenzen	15
	Prozes	sbezogene Kompetenzen	15
	Konze	ptbezogene Kompetenzen	17
	2.3	Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht	20
3 (Grunds	ätze der Leistungsbeurteilung	21
	Beurte	eilungsbereiche	21

1 Die Fachgruppe Physik in der Goetheschule Essen

Die Fachgruppe Physik versucht in besonderem Maße, jeden Lernenden in seiner Kompetenzentwicklung möglichst weit zu bringen. Außerdem wird angestrebt, Interesse an einem naturwissenschaftlich geprägten Studium oder Beruf zu wecken. In diesem Rahmen sollen u.a. Schülerinnen und Schüler mit besonderen Stärken im Bereich Physik unterstützt werden. Dieses drückt sich in AG-Angeboten (Technik-AG, Roboter-AG) ebenso aus wie in der Teilnahmemöglichkeit von Schülergruppen an Wettbewerben wie *Jugend forscht* oder der *Physikolympiade*. In Kooperation mit der Universität ermöglichen wir besonders begabten Lernenden die Teilnahme an Seminaren. Hier können sie sogar schon Leistungsnachweise erwerben, die ihnen in einem späteren Studium anerkannt werden. Ferner werden nach Möglichkeit jedes Jahr in der Jahrgangsstufe 9 unsere "Maschinenbautage" durchgeführt, bei denen die Schüler klassenweise organisierten Exkursionen in MINT-Betriebe beiwohnen und so in der Phase der Oberstufenkurswahlen in diesen Berufszweig hineinschnuppern können.

Die Bildung von stufen- und fachbezogenen Lehrerteams hat die Abstimmung in Unterrichts- und Erziehungsfragen wesentlich verbessert. Fachteams erarbeiten gemeinsam Materialien für die Fächer. Der Unterricht wird – soweit möglich – auf der Stufenebene parallelisiert. Auch in der Oberstufe ist der Austausch zu Inhalten, methodischen Herangehensweisen und zu fachdidaktischen Problemen intensiv. Insbesondere in Doppelstunden können Experimente in einer einzigen Unterrichtsphase gründlich vorbereitet und ausgewertet werden.

Die Ausstattung mit experimentiergeeigneten Fachräumen und mit Materialien ist hervorragend. Der Etat für Neuanschaffungen und Reparaturen ist über den Förderverein der Goetheschule in erfreulichem Umfang gesichert. Im Fach Physik werden zur Erfassung von Daten und Messwerten größtenteils moderne digitale Medien verwendet. An der Schule existieren zwei Computerräume, die nach Reservierung auch von Physikkursen für bestimmte Unterrichtsprojekte genutzt werden können.

In den Jahrgangsstufen sind durchschnittlich ca. 110 Schülerinnen und Schüler. Das Fach Physik wird in den Jgst. 6, 7, und 9 ganzjährig und in der Jgst. 8 halbjährig unterrichtet. Die Lehrerbesetzung in Physik ermöglicht einen ordnungsgemäßen Fachunterricht in der Sekundarstufe I, auch die Kursangebote in der Oberstufe sind gesichert. Es findet darüber hinaus ein Projektkurs "IB Physik" statt, der schwerpunktmäßig das selbstständige experimentelle arbeiten der Schüler auf dem Niveau eines physikalischen Hochschulpraktikums fördert.

Im Rahmen des IB-Diplom-Programms unserer Schule können Schüler in der Qualifikationsphyse das Fach Physik sowohl auf Standard-Level-Niveau als auch auf dem Niveau eines Higher-Level-Kurses belegen, wobei die letztere Wahl die gleichzeitige Belegung des Physik-Leistungskurses erfordert. In jedem Fall können die Schüler das Fach Physik auch unabhängig vom IB-Diplom-Programm als IB-Zertifikatskurs belegen, um so über das deutsche Abitur hinaus ein international anerkanntes Physik-Zertifikat zu erwerben.

2 Entscheidungen zum Unterricht

2.1 Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, <u>sämtliche</u> im Kernlehrplan angeführten Kompetenzen umzusetzen. Dies entspricht der Verpflichtung jeder Lehrkraft, Lerngelegenheiten für ihre Lerngruppe so anzulegen, dass <u>alle</u> Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können.

Vorbemerkung

In der Jahrgangsstufe 6 sollte die Optik am Ende unterrichtet werden, um dann nahtlos in der 7. Klasse daran anknüpfen zu können. Die Inhalte der Jahrgangsstufe 7 sollten in der Reihenfolge des nachfolgenden Lehrplans unterrichtet werden, da hier ebenfalls der Anschluss in die nächste Jahrgangsstufe hergestellt wird (Mechanik).

Die angegebenen Unterrichtswochen sind als möglicher und empfehlenswerter Rahmen zu verstehen. Anpassungen des Lehrplans zu Testzwecken sind erwünscht und werden innerhalb der Jahrgangsstufenteams abgesprochen und evaluiert um den Lehrplan kontinuierlich weiterzuentwickeln.

Jahrgangsstufe 6 (ganzjährig)

Kontext: Sonne - Temperatur - Jahreszeiten / Inhaltsfeld: Temperatur und Energie (Wärmelehre)

Unterrichts- wochen	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene Kompetenzen	prozessbezogene Kompetenzen
7	Unser Temperatursinn und das Thermometer	Bunsenbrennerführerschein Temperatursinn Temperaturmessung Thermometer Fixpunkte des Wassers Aggregatzustände (insb. Wasser) Teilchenmodell Volumen- und Längenänderung bei Erwärmung und Abkühlung Wärmeausdehnung Energieumwandlung Temperaturverläufe aufzeichnen (1-4Wochen)	Messen mit dem Thermometer, optional: Eichung eines eigenen Thermometers, Fixpunkt Schmelzwasser, Siedepunktbestimmung, Wärmeausdehnung von Festkörpern und Flüssigkeiten	E4, M1, M2	EG 1, EG 11, K2, K3, K1, K6, B1, B3, B6, B9
3	Ein warmes Zuhause – Energiequellen Sonne und Erdwärme	 Energieübertragung zwischen Körpern verschiedener Temperatur Wärmetransport Sonnenstand Energiewandler Energieumwandlungsprozesse Energieerhaltung Energietransport(ketten) 	Wärmedämmung, das Heizungsmodell, Konvektionsrohr, Temperaturverläufe bei Abkühlung aufzeichnen	E1, E2, E3, E4	EG 10, B5, K4

Kontext: Elektrizität im Alltag / Inhaltsfeld: Elektrizitätslehre

Unterrichts-	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene	prozessbezogene
wochen				Kompetenzen	Kompetenzen
7	SuS experimentieren	Stromkreise (Wann fließt	Schülerexperimentierkästen:	S4, S5, W5, W6	EG 4, K1
	mit einfachen	Strom am Beispiel der	Brettchen, Batterie, Lampen, Kabel,		
	Stromkreisen	Glühlampe)	Draht, Spannungsquelle,		
		Leiter und Isolatoren	Taster, Schalter		
		Wassermodell			
		Schalter im Stromkreis	optional:		
		• UND-, ODER- und	Alarmanlage und/oder Feuermelder		
		Wechselschaltung			
6	Was der Strom alles	Wärmewirkung	Lernzirkel mit:	S4, W4, W5, W6	EG 1, EG 2, EG 11,
	kann	•Schutzleiter	Dauermagnet, Elektromagnet, Kompass,		K1, K4, K8, B3, B8
		Steckdose	Klingel, Relais, Drehspulinstrument,		
		Sicherung	Untersuchung von Haushaltsgeräten		
		Dauermagnete und			
		Elektromagnete			
		Elementarmagnetenmodell			
		Magnetfelder und			
		Feldlinienmodell			
		Anziehung/Abstoßung			
		Anwendungen			

Kontext: Hören und Sehen / Inhaltsfeld: Akustik und Optik

Unterrichts- wochen	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene Kompetenzen	prozessbezogene Kompetenzen
4	Musikinstrumente und Gehör (fächerübergreifend Musik, Biologie und Physik)	 Schallquellen und Schallempfänger Tonhöhe und Lautstärke Schallausbreitung Frequenz und Amplitude als Grundgrößen Ohr als Schallempfänger Hörgrenze Gesundheitliche Gefahren und Schutzmaßnahmen Ultraschall (techn. und med. Sonografie) 	Geige, Klavier, Gitarre, Stimmgabel Flöte, etc., Lautsprecher (Auswahl) hohe Frequenzen hören – Online-Hörtest	S2, S3, W2, W3	EG4, EG6, EG10, K1, K5, B3, B5
6	Die Sonnen- und Mondfinsternis	 gradlinige Ausbreitung des Lichtes Schatten Lichtquelle/-sender/-empfänger Diffusion Mondphasen Sonnenstand Sonnenfinsternis und Mondfinsternis optional: Sonnensystem 	Schattenwurf und Kernschatten, Sonnenuhr, Einführung des Planetariumprogramms Stellarium	S1, W1	EG2, EG8, EG11, K4, B1, B3, B7, B9

Jahrgangsstufe 7 (ganzjährig)

Kontext: Optik hilft dem Auge auf die Sprünge / Inhaltsfeld: Optik – Spiegelung, optische Instrumente, Farbzerlegung

Unterrichts- wochen	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene Kompetenzen	prozessbezogene Kompetenzen
3	Die Welt im Spiegel	Licht und Sehen Lichtquellen und Lichtempfänger	Kerze und virtuelle Kerze	W1	EG 11, K2, B7
	Spieger	 Spiegel Reflexion – Sicherheit im Straßenverkehr Entstehung von Spiegelbildern Hilfslinie Lot 	Stationenlernen: Spiele		
4	Wie funktioniert die Linse?	 Brechung Reflexion Totalreflexion Lichtleiter in Medizin und Technik 	Schülerexperimente Brechung in Glas und Wasser Glasfaserkabel	W13	EG4, EG5, K2, K5, K6
8	Das Auge und seine Hilfen	 Aufbau und Bildentstehung beim Auge Funktion der Augenlinse Lupe als Sehhilfe Mikroskop Fernrohr/Teleskop das Phänomen Abbildung durch Linsen Brennweite und Dioptrienzahl als Kenngröße von Linsen 	Schülerexperimente: Abbildung mit Linsen, Brennpunkt, Nachbau optischer Geräte Augenmodell	S6, S12, S13	EG4, EG10, K4, K8
4	Die Welt der Farben	 Kombinationen von Linsen Zusammensetzung des weißen Lichts Spektroskop Spektralfarben Additive/subtraktive Farbmischung Wäremestrahlung Infrarotes und ultraviolettes Licht Röntgenstrahlung 	Dispersion bei Brechung, Farbfernsehen, Wärmestrahlung, Regenbogen	W14	EG2, B3

Kontext: Elektrizität - messen, verstehen, anwenden / Inhaltsfeld: Von der Elektrostatik zur Elektrizitätslehre

Unterrichts-	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler	konzeptbezogene	prozessbezogene
wochen			Versuche	Kompetenzen	Kompetenzen
6	Wie entsteht ein	 Reibungselektrizität 	Elektroskop,	M3, M4, M5, S8	EG11
	Gewitter	 positive und negative Ladungen 	Influenzmaschine,		
		Eigenschaften von Ladungen	elektrostatisches Pendel,		
		•elektrische Influenz	Bandgenerator,		
		•elektrische Feldlinien	Influenzmaschine,		
		•Faraday-Käfig	glühelektrischer Effekt,		
		•Gewitter	Gewittersimulation		
		Gefahr hoher Spannungen	(online)		
		Verhalten bei Gewitter			
6	Elektrische	Einführung von Stromstärke und	Wiederholung	S11, S12, W17	EG 3, EG 8, K1, K6, B3
	Haushaltsgeräte und	Ladung (Strom als Ladung in	Wassermodell,		
	Sicherheit	Bewegung)	Messungen mit dem		
		Stromstärken bei Reihen- und	Multimeter,		
		Parallelschaltungen	Untersuchung von		
		 Stromstärke und Spannung 	Haushaltsgeräten		
		als Grundgröße im			
		elektrischen Stromkreis			
		Elektrische Leistung			
		(P=UI)			

Kontext: 100m in 10s / Inhaltsfeld: Mechanik - Geschwindigkeit

Unterrichts-	fachlicher	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene	prozessbezogene
wochen	Kontext			Kompetenzen	Kompetenzen
4	Sport und	Messdatenerfassung und	50 m-Lauf auf dem Schulhof	W7	EG2, EG4, K2, K4, B7
	Physik	Auswertung	Geschwindigkeitsbestimmung bei		
		Durchschnitts- und	Fahrzeugen		
		Momentangeschwindigkeit			
		•Geschwindigkeiten in Natur und			
		Technik			

Jahrgangsstufe 8 (halbjährig)

Kontext: Werkzeuge und Maschinen erleichtern die Arbeit / Inhaltsfeld: Kraft, Druck und mechanische Energie

Unterrichts- wochen	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene Kompetenzen	prozessbezogene Kompetenzen
7	Kraftmessung im Alltag	 Erkennungsgrößen der Kraft Gewichtskraft und Masse Die Krafteinheit N Hooke'sches Gesetz - Kraftmesser Kraft als vektorielle Größe- Kräfteparallelogramm Zusammenwirken von Kräften 	Messen mit dem Kraftmesser, Kräfteaddition, Reibungskräfte messen, schiefe Ebene	W7, W8, W12	EG5, EG6, K4, K7
5	Schwere Lasten leichter heben	 Hebel und Flaschenzug Mechanische Arbeit und Energie Kräfte an der schiefen Ebene beim Flaschenzug beim Hebel Wegunabhängigkeit der mechanischen Arbeit Lageenergie 	Schiefe Ebene, Flaschenzug, Hebel	W9, S12, E6	EG 8, EG9, K1
6	Die Welt des Wassers (fächerüber- greifend mit Biologie und Chemie)	 Druck Druck als Kraft pro Fläche Auftrieb in Flüssigkeiten Schweredruck Luftdruck 	Stempeldruck, Lernzirkel u.a. mit: Druck an der Wasserleitung, Druckdose / Trommelfell, Cartesischer Taucher, artesischer Brunnen, Versuche unter der Vakuumglocke, Heißluftballon, Magdeburger Halbkugeln	W10, W11	EG1, EG2, EG4, EG8, EG10, K5, K8

Jahrgangsstufe 9 (ganzjährig)

Kontext: Radioaktivität und Kernenergie – Grundlagen, Anwendungen und Verantwortung / Inhaltsfeld: Radioaktivität und Kernenergie

Unterrichts-	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler	konzeptbezogene	prozessbezogene
wochen			Versuche	Kompetenzen	Kompetenzen
6	Nutzen und Risiken	Aufbau der Atome	Zählratenbestimmung	M5, M6, M7, M8, M9,	EG3, EG4, EG6, EG7, K2, K4,
	der Radioaktivität	•Das Phänomen	Simulationen Kernspaltung,	M10, W15, W16, S6, S14	K7, B1, B2, B3, B5, B8, B9,
		Radioaktivität	Kettenreaktion		B10
		Ionisierende Strahlung			
		(Arten, Reichweiten,	optional:		
		Zerfallsreihen, Halbwertszeit)	-Schülervorträge		
		Kernspaltung	-Besuch Radiologiepraxis		
		Natürliche Radioaktivität			
		Funktion des Zählrohrs			
		archäologische Methoden			
		zur Altersbestimmung			
		•medizinische Aspekte der			
		Radioaktivität			
		Diagnose mit radioaktiven			
		Markern			
		Wirkung der Radioaktivität			
		auf den menschlichen Körper			
		• Strahlennutzen,			
		Strahlenschäden und			
		Strahlenschutz			

Kontext: Elektrizität – messen, verstehen, anwenden / Inhaltsfeld: Elektrizitätslehre

Unterrichts-	fachlicher	Konkretisierungen	Vorschlag zentraler	konzeptbezogene	prozessbezogene
wochen	Kontext		Versuche	Kompetenzen	Kompetenzen
12	Autoelektrik	Lorentzkraft	Leiterschaukel	E10, S8, S9, S10, S11,	EG11, K4, K5, K6, B1, B7
		Ampèredefinition	Schülerexperiment	W17	
		Definition der elektrischen Spannung	Kalorimeter		
		Ohm'sches Gesetz			
		Drehspulmessinstrumente als			
		Spannungsmesser			
		Spannungen und Stromstärken bei Reihen-			
		und Parallelschaltungen			

Kontext: Effiziente Energienutzung: eine wichtige Zukunftsaufgabe der Physik / Inhaltsfeld: Energie, Leistung, Wirkungsgrad

Unterrichts- wochen	fachlicher Kontext	Konkretisierungen	Vorschlag zentraler Versuche	konzeptbezogene Kompetenzen	prozessbezogene Kompetenzen
8	Strom für zu Hause	 Elektromagnetismus und Induktion Hand-Regeln Elektromotor und Generator Funktion des Elektromotors Gleichheit von Generator und Elektromotor Der Transformator im Wechselstrombetrieb 	Induktion 1. und 2. Art, Demo von Motor und Generator, Schülerexperimente zum Transformator, Hochspannung, Hochstrom, Fernleitung	E11, E13, E14, S6, S9, S10, S11, S12, W18, W19	EG5, EG7, EG8, EG9, EG10, K5, K6, K8, B3, B4, B8, B9
8	Das Blockheizkraftwerk	 Innere Energie Energieerhaltung Energieumwandlungsprozesse Temperaturgefälle, Höhengefälle etc. als Voraussetzung für Energiegewinnung Die Einheit Kelvin spezifische Wärmekapazität Der absolute Nullpunkt (Gay-Lussac) Das Gesetz von Boyle-Mariotte Wärmekraftmaschinen Energieentwertung Wirkungsgrad 	Schürholzversuch Gasthermometer Gasdruck Stirlingmotor	E5, E6, E7, E8, E9, E10, E11, E12, E14, M3, S6, S7, S12, S15	EG3, EGG4, EG5, EG8, EG9, EG11, K3, K4, K6, K7, K8, B1, B3, B4, B7, B8, B9, B10

Übersicht Kompetenzen

Prozessbezogene Kompetenzen

Erkenntnisgewinnung (EG)

Schülerinnen und Schüler ...

EG1: beobachten und beschreiben physikalische Phänomene und Vorgänge und unterscheiden dabei Beobachtung und Erklärung.

EG2: erkennen und entwickeln Fragestellungen, die mit Hilfe physikalischer und anderer Kenntnisse und Untersuchungen zu beantworten sind.

EG3: analysieren Ähnlichkeiten und Unterschiede durch kriteriengeleitetes Vergleichen und systematisieren diese Vergleiche.

EG4: führen qualitative und einfache quantitative Experimente und Untersuchungen durch, protokollieren diese, verallgemeinern und abstrahieren Ergebnisse ihrer Tätigkeit und idealisieren gefundene Messdaten.

EG5: dokumentieren die Ergebnisse ihrer Tätigkeit in Form von Texten, Skizzen, Zeichnungen, Tabellen oder Diagrammen auch computergestützt.

EG6: recherchieren in unterschiedlichen Quellen (Print- und elektronische Medien) und werten die Daten, Untersuchungsmethoden und Informationen kritisch aus.

EG7: wählen Daten und Informationen aus verschiedenen Quellen, prüfen sie auf Relevanz und Plausibilität, ordnen sie ein und verarbeiten diese adressaten und situationsgerecht.

EG8: stellen Hypothesen auf, planen geeignete Untersuchungen und Experimente zur Überprüfung, führen sie unter Beachtung von Sicherheits- und Umweltaspekten durch und werten sie unter Rückbezug auf die Hypothesen aus.

EG9: interpretieren Daten, Trends, Strukturen und Beziehungen, wenden einfache Formen der Mathematisierung auf sie an, erklären diese, ziehen geeignete Schlussfolgerungen und stellen einfache Theorien auf.

EG10: stellen Zusammenhänge zwischen physikalischen Sachverhalten und Alltagserscheinungen her, grenzen Alltagsbegriffe von Fachbegriffen ab und transferieren dabei ihr erworbenes Wissen.

EG11: beschreiben, veranschaulichen oder erklären physikalische Sachverhalte unter Verwendung der Fachsprache und mit Hilfe von geeigneten Modellen, Analogien und Darstellungen.

Kommunikation (K)

Schülerinnen und Schüler ...

K1: tauschen sich über physikalische Erkenntnisse und deren Anwendungen unter angemessener Verwendung der Fachsprache und fachtypischer Darstellungen aus.

K2: kommunizieren ihre Standpunkte physikalisch korrekt und vertreten sie begründet sowie adressatengerecht.

K3: planen, strukturieren, kommunizieren und reflektieren ihre Arbeit, auch als Team.

K4: beschreiben, veranschaulichen und erklären physikalische oder naturwissenschaftlichen Sachverhalte unter Verwendung der Fachsprache und Medien, ggfs. mit Hilfe von Modellen und Darstellungen.

K5: dokumentieren und präsentieren den Verlauf und die Ergebnisse ihrer Arbeit sachgerecht, situationsgerecht und adressatenbezogen auch unter Nutzung elektronischer Medien.

K6: veranschaulichen Daten angemessen mit sprachlichen, mathematischen oder (und) bildlichen Gestaltungsmitteln wie Graphiken und Tabellen auch mit Hilfe elektronischer Werkzeuge.

K7: beschreiben und erklären in strukturierter sprachlicher Darstellung den Bedeutungsgehalt von fachsprachlichen bzw. alltagssprachlichen Texten und von anderen Medien.

K8: beschreiben den Aufbau einfacher technischer Geräte und deren Wirkungsweise.

Bewertung (B)

Schülerinnen und Schüler ...

B1: beurteilen und bewerten an ausgewählten Beispielen empirische Ergebnisse und Modelle kritisch auch hinsichtlich ihrer Grenzen und Tragweiten.

B2: unterscheiden auf der Grundlage normativer und ethischer Maßstäbe zwischen beschreibenden Aussagen und Bewertungen.

B3: stellen Anwendungsbereiche und Berufsfelder dar, in denen physikalische Kenntnisse bedeutsam sind.

B4: nutzen physikalisches Wissen zum Bewerten von Chancen und Risiken bei ausgewählten Beispielen moderner Technologien und zum Bewerten und Anwenden von Sicherheitsmaßnahmen bei Experimenten im Alltag.

B5: beurteilen an Beispielen Maßnahmen und Verhaltensweisen zur Erhaltung der eigenen Gesundheit und zur sozialen Verantwortung.

B6: benennen und beurteilen Aspekte der Auswirkungen der Anwendung naturwissenschaftlicher Erkenntnisse und Methoden in historischen und gesellschaftlichen Zusammenhängen an ausgewählten Beispielen.

B7: binden physikalische Sachverhalte in Problemzusammenhänge ein, entwickeln Lösungsstrategien und wenden diese nach Möglichkeit an.

B8: nutzen physikalische Modelle und Modellvorstellungen zur Beurteilung und Bewertung naturwissenschaftlicher Fragestellungen und Zusammenhänge.

B9: beurteilen die Anwendbarkeit eines Modells.

B10: beschreiben und beurteilen an ausgewählten Beispielen die Auswirkungen menschlicher Eingriffe in die Umwelt.

Konzeptbezogene Kompetenzen

Energie (E)

Die Schülerinnen und Schüler haben das Energiekonzept so weit entwickelt, dass sie ...

E1: an Vorgängen aus ihrem Erfahrungsbereich Speicherung, Transport und Umwandlung von Energie aufzeigen.

E2: in Transportketten Energie halbquantitativ bilanzieren und dabei die Idee der Energieerhaltung zugrunde legen.

E3: an Beispielen zeigen, dass Energie, die als Wärme in die Umgebung abgegeben wird, in der Regel nicht weiter genutzt werden kann.

E4: an Beispielen energetische Veränderungen an Körpern und die mit ihnen verbundenen Energieübertragungsmechanismen einander zuordnen.

E5: in relevanten Anwendungszusammenhängen komplexere Vorgänge energetisch beschreiben und dabei Speicherungs-, Transport-, Umwandlungsprozesse erkennen und darstellen.

E6: die Energieerhaltung als ein Grundprinzip des Energiekonzepts erläutern und sie zur quantitativen energetischen Beschreibung von Prozessen nutzen.

E7: die Verknüpfung von Energieerhaltung und Energieentwertung in Prozessen aus Natur und Technik (z. B. in Fahrzeugen, Wärmekraftmaschinen, Kraftwerken usw.) erkennen und beschreiben.

E8: an Beispielen Energiefluss und Energieentwertung quantitativ darstellen.

E9: den quantitativen Zusammenhang von umgesetzter Energiemenge (bei Energieumsetzung durch Kraftwirkung: Arbeit), Leistung und Zeitdauer des Prozesses kennen und in Beispielen aus Natur und Technik nutzen.

E10: Temperaturdifferenzen, Höhenunterschiede, Druckdifferenzen und Spannungen als Voraussetzungen für und als Folge von Energieübertragung an Beispielen aufzeigen.

E11: Lage-, kinetische und durch den elektrischen Strom transportierte sowie thermisch übertragene Energie (Wärmemenge) unterscheiden, formal beschreiben und für Berechnungen nutzen.

E12: beschreiben, dass die Energie, die wir nutzen, aus erschöpfbaren oder regenerativen Quellen gewonnen werden kann.

E13: die Notwendigkeit zum "Energiesparen" begründen sowie Möglichkeiten dazu in ihrem persönlichen Umfeld erläutern.

E14: verschiedene Möglichkeiten der Energiegewinnung, -aufbereitung und -nutzung unter physikalisch-technischen, wirtschaftlichen und ökologischen Aspekten vergleichen und bewerten sowie deren gesellschaftliche Relevanz und Akzeptanz diskutieren.

Struktur der Materie (M)

Die Schülerinnen und Schüler haben das Materiekonzept so weit entwickelt, dass sie ...

M1: an Beispielen beschreiben, dass sich bei Stoffen die Aggregatzustände durch Aufnahme bzw. Abgabe von thermischer Energie (Wärme) verändern.

- M2: Aggregatzustände, Aggregatzustandsübergänge auf der Ebene einer einfachen Teilchenvorstellung beschreiben.
- M3: verschiedene Stoffe bzgl. ihrer thermischen, mechanischen oder elektrischen Stoffeigenschaften vergleichen.
- M4: die elektrischen Eigenschaften von Stoffen (Ladung und Leitfähigkeit) mit Hilfe eines einfachen Kern-Hülle-Modells erklären.
- M5: Eigenschaften von Materie mit einem angemessenen Atommodell beschreiben.
- M6: die Entstehung von ionisierender Teilchenstrahlung beschreiben.
- M7: Eigenschaften und Wirkungen verschiedener Arten radioaktiver Strahlung und Röntgenstrahlung nennen.
- M8: Prinzipien von Kernspaltung und Kernfusion auf atomarer Ebene beschreiben.
- M9: Zerfallsreihen mithilfe der Nuklidkarte identifizieren.
- M10: Nutzen und Risiken radioaktiver Strahlung und Röntgenstrahlung bewerten.

System (S)

Die Schülerinnen und Schüler haben das Systemkonzept so weit entwickelt, dass sie ...

- S1: den Sonnenstand als eine Bestimmungsgröße für die Temperaturen auf der Erdoberfläche erkennen.
- S2: Grundgrößen der Akustik nennen.
- S3: Auswirkungen von Schall auf Menschen im Alltag erläutern.
- S4: an Beispielen erklären, dass das Funktionieren von Elektrogeräten einen geschlossenen Stromkreis voraussetzt.
- S5: einfache elektrische Schaltungen planen und aufbauen.
- S6: den Aufbau von Systemen beschreiben und die Funktionsweise ihrer Komponenten erklären (z. B. Kraftwerke, medizinische Geräte, Energieversorgung).
- S7: Energieflüsse in den oben genannten offenen Systemen beschreiben.
- S8: die Spannung als Indikator für durch Ladungstrennung gespeicherte Energie beschreiben.
- S9: den quantitativen Zusammenhang von Spannung, Ladung und gespeicherter bzw. umgesetzter Energie zur Beschreibung energetischer Vorgänge in Stromkreisen nutzen.
- S10: die Beziehung von Spannung, Stromstärke und Widerstand in elektrischen Schaltungen beschreiben und anwenden.
- S11: umgesetzte Energie und Leistung in elektrischen Stromkreisen aus Spannung und Stromstärke bestimmen.
- S12: technische Geräte hinsichtlich ihres Nutzens für Mensch und Gesellschaft und ihrer Auswirkungen auf die Umwelt beurteilen.
- S13: die Funktion von Linsen für die Bilderzeugung und den Aufbau einfacher optischer Systeme beschreiben.

S14: technische Geräte und Anlagen unter Berücksichtigung von Nutzen, Gefahren und Belastung der Umwelt vergleichen und bewerten und Alternativen erläutern.

S15: die Funktionsweise einer Wärmekraftmaschine erklären.

Wechselwirkung (W)

Die Schülerinnen und Schüler haben das Wechselwirkungskonzept so weit entwickelt, dass sie ...

W1: Bildentstehung und Schattenbildung sowie Reflexion mit der geradlinigen Ausbreitung des Lichts erklären.

W2: Schwingungen als Ursache von Schall und Hören als Aufnahme von Schwingungen durch das Ohr identifizieren.

W3: geeignete Schutzmaßnahmen gegen die Gefährdungen durch Schall und Strahlung nennen.

W4: beim Magnetismus erläutern, dass Körper ohne direkten Kontakt eine anziehende oder abstoßende Wirkung aufeinander ausüben können.

W5: an Beispielen aus ihrem Alltag verschiedene Wirkungen des elektrischen Stromes aufzeigen und unterscheiden.

W6: geeignete Maßnahmen für den sicheren Umgang mit elektrischem Strom beschreiben.

W7: Bewegungsänderungen oder Verformungen von Körpern auf das Wirken von Kräften zurückführen.

W8: Kraft und Geschwindigkeit als vektorielle Größen beschreiben.

W9: die Wirkungsweisen und die Gesetzmäßigkeiten von Kraftwandlern an Beispielen beschreiben.

W10: Druck als physikalische Größe quantitativ beschreiben und in Beispielen anwenden.

W11: Schweredruck und Auftrieb formal beschreiben und in Beispielen anwenden.

W12: die Beziehung und den Unterschied zwischen Masse und Gewichtskraft beschreiben.

W13: Absorption, und Brechung von Licht beschreiben.

W14: Infrarot-, Licht- und Ultraviolettstrahlung unterscheiden und mit Beispielen ihre Wirkung beschreiben.

W15: experimentelle Nachweismöglichkeiten für radioaktive Strahlung beschreiben.

W16: die Wechselwirkung zwischen Strahlung, insbesondere ionisierender Strahlung, und Materie sowie die daraus resultierenden Veränderungen der Materie beschreiben und damit mögliche medizinische Anwendungen und Schutzmaßnahmen erklären.

W17: die Stärke des elektrischen Stroms zu seinen Wirkungen in Beziehung setzen und die Funktionsweise einfacher elektrischer Geräte darauf zurückführen.

W18: den Aufbau eines Elektromotors beschreiben und seine Funktion mit Hilfe der magnetischen Wirkung des elektrischen Stromes erklären.

W19: den Aufbau von Generator und Transformator beschreiben und ihre Funktionsweisen mit der elektromagnetischen Induktion erklären.

2.2 Grundsätze der fachmethodischen und fachdidaktischen Arbeit im Physikunterricht

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Physik die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. Die Grundsätze 1 bis 14 beziehen sich auf fachübergreifende Aspekte, die Grundsätze 15 bis 26 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

- 1.) Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
- 2.) Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Schülerinnen und Schüler.
- 3.) Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
- 4.) Medien und Arbeitsmittel sind lernernah gewählt.
- 5.) Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
- 6.) Der Unterricht fördert und fordert eine aktive Teilnahme der Lernenden.
- 7.) Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
- 8.) Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Schülerinnen und Schüler.
- 9.) Die Lernenden erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
- 10.) Der Unterricht fördert strukturierte und funktionale Einzel-, Partner- bzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
- 11.) Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
- 12.) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
- 13.) Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
- 14.) Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

- 15.) Der Physikunterricht ist problemorientiert und an Kontexten ausgerichtet.
- 16.) Der Physikunterricht ist kognitiv aktivierend und verständnisfördernd.
- 17.) Der Physikunterricht unterstützt durch seine experimentelle Ausrichtung Lernprozesse bei Schülerinnen und Schülern.
- 18.) Der Physikunterricht knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an.
- 19.) Der Physikunterricht stärkt über entsprechende Arbeitsformen kommunikative Kompetenzen.
- 20.) Der Physikunterricht bietet nach experimentellen oder deduktiven Erarbeitungsphasen immer auch Phasen der Reflexion, in denen der Prozess der Erkenntnisgewinnung bewusst gemacht wird.
- 21.) Der Physikunterricht fördert das Einbringen individueller Lösungsideen und den Umgang mit unterschiedlichen Ansätzen. Dazu gehört auch eine positive Fehlerkultur.
- 22.) Im Physikunterricht wird auf eine angemessene Fachsprache und die Kenntnis grundlegender Formeln geachtet. Schülerinnen und Schüler werden zu regelmäßiger, sorgfältiger und selbstständiger Dokumentation der erarbeiteten Unterrichtsinhalte angehalten. Alle

- Rechnungen werden konsequent unter Berücksichtigung der physikalischen Einheiten durchgeführt.
- 23.) Der Physikunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen und deren Teilziele für die Schülerinnen und Schüler transparent.
- 24.) Der Physikunterricht bietet immer wieder auch Phasen der Übung und des Transfers auf neue Aufgaben und Problemstellungen.
- 25.) Der Physikunterricht bietet die Gelegenheit zum regelmäßigen wiederholenden Üben sowie zu selbstständigem Aufarbeiten von Unterrichtsinhalten.
- 26.) Im Physikunterricht wird zeitgleich mit dem Fach Mathematik ein GTR verwendet, insofern es sich thematisch anbietet. Die Messwerterfassung/-auswertung kann auf diese Weise oder per PC erfolgen.

2.3 Grundsätze der Leistungsbeurteilung

Die Leistungsbewertung bezieht sich auf die im Zusammenhang mit dem Unterricht erworbenen Kompetenzen.

Die Kriterien der Leistungsbeurteilung werden den Schülerinnen und Schülern mitgeteilt, der jeweilige Leistungsstand wird ihnen in vertretbaren Zeitabständen bekanntgegeben.

Lernerfolgsüberprüfungen werden kontinuierlich durchgeführt, wobei die Ergebnisse schriftlicher Überprüfungen keine bevorzugte Stellung innerhalb der Notengebung einnehmen dürfen; den Schülerinnen und Schülern werden vielfältige Gelegenheiten gegeben, ihr Leistungsvermögen zu demonstrieren.

Beurteilungsbereiche

1. Mündliche Beiträge

- Beiträge zum Unterrichtsgespräch (u.a. Hypothesenbildung, Lösungsvorschläge, Bewerten von Ergebnissen, Analyse und Interpretation von Texten, Graphiken oder Diagrammen)
- Abgerufene Beiträge, z.B. Wiederholungen, Transferleistungen, ...
- Kurzvorträge, z.B. Darstellung von Sachzusammenhängen, Beobachtungen, Experimenten, \dots
- Erstellen und Vortragen von Referaten

2. Schriftliche Beiträge

- Beobachtungs- und Versuchsprotokolle
- Bearbeitung von Arbeitsblättern
- Erstellung von Dokumentationen und Präsentationen
- Schriftliche Übungen und Überprüfungen

- Führung des Physikheftes
- Facharbeiten

3. Manuelle Fertigkeiten

- Aufbau und Umgang mit Experimenten

4. Lern- und Arbeitsverhalten

- Einsatzbereitschaft bei der Planung von Vorhaben (Ausstellungen, Projekte, ...)
- Umsetzung von Arbeitsaufträgen (praktisch / theoretisch) im Rahmen von Gruppenarbeiten (und ggf. Exkursionen)
- Arbeit mit Schul-, Fach- und Experimentierbüchern

2.4 Lehr- und Lernmittel

Für den Physikunterricht in der Sekundarstufe I ist an der Schule derzeit das Schulbuch "Klett: Impulse Physik 1" für die Jahrgangsstufe 6 und "Klett: Impulse Physik 2" für die Jahrgangsstufe 7-9 eingeführt. Dieses dient für die Schüler aber nur zur Vor- und Nachbereitung, da im Unterricht in der Regel nicht auf das Buch zurückgegriffen wird.

Die Schülerinnen und Schüler arbeiten die im Unterricht behandelten Inhalte in häuslicher Arbeit nach, ggf. bei Abwesenheit anhand einer Kopie der Mitschrift eines Schülers aus dem Unterricht.

Unterstützende Materialien werden auf der Webseite "leifiphysik.de" zu den einzelnen Themen gezeigt.